The CFA produces its Grassland Curing Guide in both printed and electronic versions.

The printed copy provides an accurate and true colour representation suitable for estimating grassland curing rates. This electronic version is for demonstration and educational purposes only, due to colour inaccuracies which occur when printing or viewing online documents.

For purchasing details contact Stephen Walls.
Email: s.walls@cfa.vic.gov.au
Postal Address: Stephen Walls
CFA Fiskville Training College
RMB 300 Ballan, 3342
The CFA Grassland Curing Guide

This booklet has been prepared to assist observers in estimating the level of grassland curing for the purposes of monitoring the progression of curing into the fire danger period, and predicting fire danger and fire behaviour. Visual estimation using the CFA Grassland Curing Guide is a useful and immediate method for assessing curing.

The Guide may be used to help identify grass fuel moisture conditions which is particularly useful in assisting fire prevention and suppression activities. Estimates of curing status can aid the:

- Assessment of the onset of a fire season relative to previous years
- Implementation of fire restrictions
- Input into decision making for fuel reduction burning
- Estimation of fire danger
- Calculations of fire behaviour and fire spread
- Deployment of fire fighting resources
- The declaration of Total Fire Ban Days

The Curing Process

Most crop and pasture species possess a life cycle in which the plant annually dies or becomes dormant and dries out, thereby creating the potential for the uncontrolled spread of fire. This annual drying process is termed curing.

During spring, pasture species undergo a period of growth and would normally complete this in late spring or early summer, depending upon seasonal variables such as rain and temperature. As the period of growth is completed, crops and pastures lose their ability to draw moisture from the soil and consequently begin to desiccate. By high summer the plant is almost devoid of moisture and is said to be completely cured. A generalized progression of curing in south-eastern Australia is shown in Figure 1.
Figure 1: Generalized progression of curing over the summer period in south-eastern Australia

- **Curing state uniform over a series of paddocks**
 - 20% FMC
 - 60% FMC: Fire can spread through a grass sward once curing is beyond this point
 - 140% FMC

- **Curing state variable over a series of paddocks**
 - October November
 - Flowering between 0-30% cured, yellowing begins as seed heads develop
 - December January
 - Low fire danger

- **Pre-fire danger period**

- **Fire danger period**

NB: See figure 1 for the relationship between cured (%) and fuel moisture content (FMC).
How Is Curing Measured?

Using observations made by Parrot and Donald (1970), Barber (1990) developed a mathematical relationship between the Fuel Moisture Content (FMC) and the Grassland Curing Index (Figure 2). FMC is the weight of the water in the plant material expressed as a percentage of the Oven Dry Weight of the plant material. In the guide the corresponding FMC is shown in the top right corner above each photo. Luke and McArthur (1978) related curing, as a percentage, to vegetation colour and the accompanying physical changes (Table 1, see page 7). The changes in colour from green to bleached straw indicate diminishing leaf chlorophyll content. These two methods of assessing the amount of dead grass in a grass sward provide the structural basis for the CFA Grassland Curing Guide.

Figure 2: Relationship between the Grassland Curing Index and Fuel Moisture Content (Barber 1990).

\[y = 109.6758 - 1.0721x + 0.0044x^2 - 6.295 - 6x^3 \]

\[R = 1 \]
There are several other methods used to determine curing state:

- The most common and reliable being oven dry weighing using a convective oven.
- Field measurements via portable instruments will become more prominent as their accuracy and reliability increase.
- Environmental/growth models, using rainfall and temperature data to predict crop and pasture growth and grassland curing, have had limited operational use to date but further investigation and development is continuing.
- Remote sensing instruments are able to calculate grassland curing and have been in use in since the mid 1980’s. They are becoming a routinely used tool in Australia.

Plant Fuel Moisture Content and Fire Behaviour

The moisture content of fine fuels such as crops and pastures dramatically affects the ignition potential and spreading characteristics of fire. Moisture affects both these parameters primarily by increasing the specific heat and thermal conductivity of the fuel so that more heat must be absorbed in order for the fuel to reach ignition temperature.

Once ignition has occurred and active combustion is taking place moisture will act as a heat sink and interfere with the preheating of adjacent fuels. As plant moisture decreases, fire intensity and rates of forward spread increase.

Whilst the green component of grassland fuels alter slowly as the physiological state changes, the moisture content of the dead component may fluctuate diurnally due to the influences of temperature, relative humidity, rain and dew.
Important Notes

- From the time seed heads are fully developed it will take at least six weeks for grasses to become fully cured.
- Late rains delay the maturing process until the onset of hot weather conditions, when curing will proceed rapidly. Lack of spring rains and an early commencement to the summer will cause pasture to cure early but less rapidly.
- Rainfall before 60% cured will prolong grass life and slow curing, while rainfall after 60% cured will not further delay the curing of adult grass.
- Over a series of paddocks, the progression of curing will be patchy, especially during the 40-80% curing period (ie, some parts will cure faster than others). Curing is more patchy with increasing species number and variable topography. Figure 3 gives examples of variation in curing and pasture condition observed at 50-60% cured over several paddocks.
- Above 80% cured, fuel moisture content begins to be significantly influenced by environmental factors such as humidity and temperature.
- The long-term rainfall and temperature patterns, and the growth habits of the individual grass species also influence the progression of curing.
How to use this Guide

The following photos are a guide only and measurements made based on colour alone are not adequate. Investigation of the physiological characteristics of the grass sward (the descriptions are located beside each photo) is also required.

- It is recommended that observers study the pastures at close quarters at a number of individual sites, before determination of the state of curing, as pasture viewed from the roadside or fenceline may lead to inaccurate estimates.

- Determine the overall colour of pasture and check for seed head development. Match these with the appropriate description in the guide and select the ‘percentage cured’ figure.

- Ensure that the selected figure is appropriate to other pasture species within the district by carrying out observations at a number of other locations.

- The ‘percentage cured’ may now be used in an appropriate Model to estimate fire danger and fire behaviour, given certain weather condition.

Table 1: Various Stages of Curing (Barber 1966)

<table>
<thead>
<tr>
<th>% Cured</th>
<th>Colour</th>
<th>Physiological Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Green</td>
<td>From the beginning of growth to commencement of seed head development</td>
</tr>
<tr>
<td>10</td>
<td>Green</td>
<td>Seed heads formed and flowering</td>
</tr>
<tr>
<td>20</td>
<td>Yellowish-Green</td>
<td>Seed heads maturing and seed dropping</td>
</tr>
<tr>
<td>30</td>
<td>Yellowish-Green</td>
<td>Most seed heads mature and seed dropping</td>
</tr>
<tr>
<td>40</td>
<td>Yellow-Green</td>
<td>Most seed heads mature and seed dropping</td>
</tr>
<tr>
<td>50-60</td>
<td>Straw - odd patch of green and greenish-yellow</td>
<td>Up to $\frac{1}{2}$ of all stems have dropped their seed, some paddocks will be fully cured, others may be quite green</td>
</tr>
<tr>
<td>70-80</td>
<td>Straw-very little green showing anywhere</td>
<td>Most seed heads have dropped their seed, lower third of stalk may be green</td>
</tr>
<tr>
<td>90</td>
<td>Straw, odd green gully,</td>
<td>Essentially all seed has dropped, odd individual stalk may be green</td>
</tr>
<tr>
<td>100</td>
<td>Bleached</td>
<td>All stalks fully cured, seed heads and stalks break easily</td>
</tr>
</tbody>
</table>
Figure 3: Examples of differences in appearance of paddocks at 50-60% cured.

NOTE: This electronic version is for demonstration and education purposes only and is not to be used to make curing estimates.
0% CURED

FM C > 200

Colour
Green

Seed Development
From the beginning of growth to the commencement of seed development.

NOTE:
This electronic version is for demonstration and education purposes only and is not to be used to make curing estimates.
10% CURED

Colour
Green

Seed Development
Seed heads formed and flowering.

NOTE:
This electronic version is for demonstration and education purposes only and is not to be used to make curing estimates.
20% CURED

NOTE:
This electronic version is for demonstration and education purposes only and is not to be used to make curing estimates.
30% CURED

Colour
Yellowish-Green

Seed Development
Most seed heads mature and seed dropping.

NOTE:
This electronic version is for demonstration and education purposes only and is not to be used to make curing estimates.
40% CURED

FMC 90-120

Colour
Yellow-Green

Seed Development
Most seed heads mature and seed dropping

NOTE:
This electronic version is for demonstration and education purposes only and is not to be used to make curing estimates.
50-60% CURED

FM C > 50-90

Colour
Straw: Odd patch of Green or Yellowish-Green

Seed Development
 Approximately 1/2 of all stems have dropped their seed.

Note: Some paddocks will be nearly fully cured, others may be fairly green. (See page 8.)
Colour
Straw, very little green showing anywhere, some greenness still evident in lower third of stalks. Many stalks fully cured.

Seed Development
Most seed heads have dropped their seed.
90% CURED

Color
Straw, odd green gully. Odd individual grass stalks may show some greenness.

NOTE:
This electronic version is for demonstration and education purposes only and is not to be used to make curing estimates.

Seed Development
All seed has dropped
100% CURED

FM C < 15

Colour
Bleached

Seed Development
All stalks fully cured, seedheads and stalks starting to break easily.

NOTE:
This electronic version is for demonstration and education purposes only and is not to be used to make curing estimates.
References

McArthur, A.G. (1966). The application of a drought index system to Australian fire control. (Forest Research Institute, Forestry and Timber Bureau, Canberra, ACT).

M. Garvey and S. Millie
Business Planning and Review
Victorian Country Fire Authority
September 1999.